
BTEC Level 3 Computing





Event Driven 
Programming



W
ha

t i
s 

Ev
en

t-
D

riv
en

 
Pr

og
ra

m
m

in
g?

Programs that respond to events 
(like clicking a button).

Wait for something to happen, then 
react to it.

Like a waiter responding to 
customer requests.

Examples: Mobile apps, video 
games, desktop applications.





Main 
Structures

Main Loop.

Callback Function.

Sub-Routines.



Structure: 
Main Loop

Constantly checks for new 
events.

Like a security guard 
watching for activity.



Structure: Main Loop Example

while program_is_running: 
check_for_events() 
handle_events()





Structure: 
Callback 
Functions

Functions that run when an 
event happens.

Like telling a friend "Call me 
back when dinner is ready."



Structure: Callback Functions Example

def button_clicked(): 
print("You clicked the button!") 

button.on_click(button_clicked) # Callback registration





Structure: Sub-routines

• Small tasks that support event handling.

• Break down complex actions into simple 
steps.



Structure: Sub-routines Examples

def save_user_data(): 
check_data() 
write_to_database() 
show_success_message()





Feature: Events

• Actions or occurrences in your program.

• Examples: 

• Mouse clicks.

• Keyboard presses.

• Timer completing.

• Message received.

• Screen touch.





Feature: Event Handlers

• Code that runs when an event 
occurs.

• Like a recipe for what to do.



Feature: Event Handlers Example

def handle_login_button(username, password): 
if username and password: 

login_user() 
else: 

show_error()





Feature: 
Event Loops

Continuously checks for 
new events.

Distributes events to correct 
handlers.



Feature: Event Loops Example

while True: 
event = get_next_event() 
if event.type == "MOUSE_CLICK": 

handle_mouse_click() 
elif event.type == "KEY_PRESS": 

handle_key_press()





Feature: 
Service-
Oriented 
Processing

Breaking program into separate services.

Each service handles specific events.

Like different departments in a company.

Example: 

Print Service: Handles print requests.

Email Service: Handles email events.

Save Service: Handles save operations.





Feature: 
Time-Driven 
Events

Events that occur at specific 
times.

Or after a certain delay.



Feature: Time-Driven Events Examples

def remind_user(): 
show_message("Time for a break!") set_timer(30_minutes, remind_user)





Feature: 
Trigger 
Functions

Functions that start events.

Like pushing a domino to 
start a chain reaction.



Feature: Trigger Functions Example

def start_game(): 
trigger_game_start_event() 
initialize_players() 
start_timer()





Event Driven 
Real World 
Examples

Button clicks in mobile apps.

Form submissions on websites.

Game character movement.

Chat message notifications.

Auto-save in text editors.



Advantages Of 
Event Driven 
Programming

Better user interaction.

Responsive applications.

Efficient resource use.

Easy to maintain.

Natural way to handle user input.



Disadvantages 
Of Event Driven 
Programming

Complexity: Harder to debug, flow is less clear.

Understanding: Code can be scattered, hard to see the big 
picture.

Shared Data: Managing data between handlers is tricky.

Testing: Simulating events is difficult.

Callbacks: Nested callbacks can be messy.

Control: Flow is inverted, can be confusing.

Resources: Handlers might consume resources unnecessarily.





Next Time

Coding For The Web


	Slide 1: BTEC Level 3 Computing
	Slide 2
	Slide 3: Event Driven Programming
	Slide 4: What is Event-Driven Programming?
	Slide 5
	Slide 6: Main Structures
	Slide 7: Structure: Main Loop
	Slide 8: Structure: Main Loop Example
	Slide 9
	Slide 10: Structure: Callback Functions
	Slide 11: Structure: Callback Functions Example
	Slide 12
	Slide 13: Structure: Sub-routines
	Slide 14: Structure: Sub-routines Examples
	Slide 15
	Slide 16: Feature: Events
	Slide 17
	Slide 18: Feature: Event Handlers
	Slide 19: Feature: Event Handlers Example
	Slide 20
	Slide 21: Feature: Event Loops
	Slide 22: Feature: Event Loops Example
	Slide 23
	Slide 24: Feature: Service-Oriented Processing
	Slide 25
	Slide 26: Feature: Time-Driven Events
	Slide 27: Feature: Time-Driven Events Examples
	Slide 28
	Slide 29: Feature: Trigger Functions
	Slide 30: Feature: Trigger Functions Example
	Slide 31
	Slide 32: Event Driven Real World Examples
	Slide 33: Advantages Of Event Driven Programming
	Slide 34: Disadvantages Of Event Driven Programming
	Slide 35
	Slide 36: Next Time

