
BTEC Level 3 Computing



The issues and 
implications of 
translating 
code between 
programming 
languages 
including:

Reasons for translating code from one language to 
another.

Benefits of translating code from one language to 
another.

Drawbacks of translating code from one language 
to another.

The implications of 
translating code and the 
impact on:

Users.

Organisations.

Developers.

Alternative ways to implement current code base.





Translation



Why Do We 
Translate Code?

Old systems need to use newer technology.

Company wants to switch to a more popular 
language.

Need to make programs work on different 
devices.

Original programming language is no longer 
supported.

Team's expertise is in a different language.



Advantage 1: 
Better 
Performance

Newer languages often 
run faster.

Modern features 
improve speed.

Better memory usage.



Advantage 2: 
More Features

Access to modern tools and 
libraries.

Better security options.

More ways to improve the 
program.



Advantage 3: Wider Reach

Program can work on more devices.

More developers can work on the code.

Easier to find help and resources.





Challenge 1: Time and Cost

Translation takes lots of work.

Need to test everything again.

Might need to train staff.



Challenge 2: 
Possible 
Errors

Things might not work exactly 
the same.

Some features might be lost.

New bugs could appear.



Challenge 
3: 

Learning 
Curve

Users might need to learn 
new ways to use the program.

Developers need to learn new 
language.

Documentation needs 
updating.





How Users Are 
Affected

Might need to learn new 
interfaces.

Program might work 
differently.

Could be faster or slower than 
before.



User 
Benefits

Often get new features.

Better security.

More modern look and feel.



User Challenges

• Need time to adjust.

• Might need training.

• Old habits need to change.





Business Effects

Cost of translation project.

Time spent on translation.

Staff training needed.



Business 
Benefits

Easier to find developers.

Modern technology support.

Better long-term 
maintenance.



Business 
Risks

Project might take longer than 
planned.

Unexpected problems might 
appear.

Temporary disruption to service.





Developer Challenges

Learning new 
language.

1

Understanding old 
code.

2

Finding equivalent 
features.

3



Developer Benefits

Work with modern tools.Work

Learn new skills.Learn

Better job opportunities.Job



Developer 
Responsibilities Ensure 

accurate 
translation.

1
Maintain 
code quality.

2
Document 
changes 
clearly.

3





Option 1: 
Wrapper 
Approach

Keep old code but wrap it in 
new code.

Less risky than full 
translation.

Faster to implement.



Option 2: Gradual Replacement

Replace small parts one at a time.

Safer than changing everything at once.

Can spread cost over time.



Option 3: Complete Rewrite

Start fresh in new 
language.

01
Most time-
consuming 
option.

02
Chance to 
improve 
everything.

03





Best 
Practices

Planning.

Implementation.

Maintenance.



Planning

Carefully assess 
need for 
translation.

1

Choose right target 
language.

2

Set realistic 
timeline.

3



Implementation

Test thoroughly.

Keep good documentation.

Train users and staff.



Maintenance

Regular updates.

Monitor performance.

Gather user feedback.





Real World 
Example: 

Bank System 
Update

Old system: Written in COBOL

New system: Converted to Java

Benefits:

Faster processing

Better security

Easier to find developers

Challenges:

Long testing period

Staff training needed

High initial cost





Key 
Takeaways

• Translation needs careful planning.

• Consider all affected parties.

• Choose the right approach.

• Allow time for adjustment.

• Focus on long-term benefits.





Next Time

Unit 1 Completed...


	Slide 1: BTEC Level 3 Computing
	Slide 2: The issues and implications of translating code between programming languages including: 
	Slide 3
	Slide 4: Translation
	Slide 5: Why Do We Translate Code?
	Slide 6: Advantage 1: Better Performance
	Slide 7: Advantage 2: More Features
	Slide 8: Advantage 3: Wider Reach
	Slide 9
	Slide 10: Challenge 1: Time and Cost
	Slide 11: Challenge 2: Possible Errors
	Slide 12: Challenge 3: Learning Curve
	Slide 13
	Slide 14: How Users Are Affected
	Slide 15: User Benefits
	Slide 16: User Challenges
	Slide 17
	Slide 18: Business Effects
	Slide 19: Business Benefits
	Slide 20: Business Risks
	Slide 21
	Slide 22: Developer Challenges
	Slide 23: Developer Benefits
	Slide 24: Developer Responsibilities
	Slide 25
	Slide 26: Option 1: Wrapper Approach
	Slide 27: Option 2: Gradual Replacement
	Slide 28: Option 3: Complete Rewrite
	Slide 29
	Slide 30: Best Practices
	Slide 31: Planning
	Slide 32: Implementation
	Slide 33: Maintenance
	Slide 34
	Slide 35: Real World Example: Bank System Update
	Slide 36
	Slide 37: Key Takeaways
	Slide 38
	Slide 39: Next Time

