
BTEC Level 3 Computing

Object-Orientated
Programming

What is
Object-

Oriented
Programming?

A programming paradigm based on "objects"
containing data and code.

Organizes software design around
data/objects rather than functions and logic.

Models real-world entities in code.

Promotes cleaner, more maintainable, and
reusable code.

Structure
Classes

Blueprint or template for
creating objects.

Define attributes (data) and
methods (behavior).

There are a lot of examples out
there of creating vehicles or
animals.

Structure Classes Example

• class Car:
• def __init__(self, brand, model):
• self.brand = brand
• self.model = model
•
• def start_engine(self):
• return f"The {self.brand} {self.model}'s engine is
running"

Structure
Objects/Instances

Instances created from
classes.

Represent specific
examples of a class.

Contain unique data but
share behavior.

Structure Objects/Instances Example

• # Creating car objects

my_car = Car("Toyota", "Corolla")
sports_car = Car("Ferrari", "F40")
print(my_car.start_engine())
print(sports_car.start_engine())

Features Of
Object-

Oriented
Programming

Inheritance.

Encapsulation.

Polymorphism and Overloading.

Data Hiding.

Reusability.

Feature:
Inheritance

• Allows classes to inherit features from
other classes.

• Creates a parent-child relationship
between classes.

• Promotes code reuse and hierarchy.

Feature: Encapsulation

Bundles related data and methods together.

Controls access to internal details.

Provides a clean interface for using objects.

Feature:
Polymorphism

and
Overloading

Objects can take different
forms while sharing interface.

Methods can have different
implementations.

Allows for flexible and
extensible code.

Feature: Data
Hiding

• Restricts direct access to object
data.

• Uses private and protected
attributes.

• Prevents unauthorized
modifications.

Feature: Reusability

Write

Write once, use
many times (FIFA
or EA FC).

Share

Share code across
projects.

Reduce

Reduce
duplication.

Real-World Applications

Complex
software
systems.

Game
development.

GUI
applications.

Web
applications.

Enterprise
software.

Mobile app
development.

Advantages of OOP

Better organization of code.

Easier maintenance.

Code reusability.

Scalability.

Security through data hiding.

Natural modeling of real-world entities.

Disadvantages
of OOP

Next Time

Event Driven Programming

	Slide 1: BTEC Level 3 Computing
	Slide 2
	Slide 3: Object-Orientated Programming
	Slide 4: What is Object-Oriented Programming?
	Slide 5: Structure Classes
	Slide 6: Structure Classes Example
	Slide 7: Structure Objects/Instances
	Slide 8: Structure Objects/Instances Example
	Slide 9
	Slide 10: Features Of Object-Oriented Programming
	Slide 11: Feature: Inheritance
	Slide 12: Feature: Encapsulation
	Slide 13: Feature: Polymorphism and Overloading
	Slide 14: Feature: Data Hiding
	Slide 15: Feature: Reusability
	Slide 16: Real-World Applications
	Slide 17: Advantages of OOP
	Slide 18: Disadvantages of OOP
	Slide 19
	Slide 20: Next Time

