
BTEC Level 3 Computing

Selecting, applying,
using and interpreting
validation techniques
to analyse and
improve the accuracy
and validity of data.

Validating Data

What is Data
Validation?

• Data validation is the process of ensuring
that data entered into a system (like a
form, database, or program) is correct,
relevant, and consistent.

• It's like a quality control check for your
data.

• The goal is to prevent bad data from
being stored or used, which can lead to
errors, inconsistencies, and unreliable
results.

Why validate
Data?

Data Integrity: Ensures that the data is accurate and reliable.
This is crucial for making good decisions based on the data.

Error Prevention: Catches errors early, before they cause
problems in other parts of the system. It's much easier to fix bad
data at the source than to deal with the consequences later.

Improved User Experience: Provides helpful feedback to users
when they enter incorrect data, guiding them to correct it. This
prevents frustration and makes the system easier to use.

System Stability: Prevents bad data from crashing the system or
corrupting databases.

Security: Can help prevent malicious data entry, such as SQL
injection attacks or cross-site scripting (XSS).

Why validate
Data?

System Stability: Prevents
bad data from crashing the
system or corrupting
databases.

Security: Can help prevent
malicious data entry, such as
SQL injection attacks or
cross-site scripting (XSS).

Types Of Data
Validation

• Data Type.

• Range.

• Constraints.

• Boolean.

Data Type
Data
Validation

Data type validation is a specific
type of data validation that focuses
on ensuring that the data entered is
of the expected data type.

For example, if you expect an
integer (whole number), you would
validate that the input is indeed an
integer and not a string, a float, or
some other data type.

Data Type
Data
Validation
Example

• age = "51"

if type(age) is int:
 print("Age accepted")
else:
 print("Age NOT
accepted")

• age = 51

if type(age) is int:
 print("Age accepted")
else:
 print("Age NOT
accepted")

Range Data
Validation

• Used to ensure the value is
between the required.

• For example a person cannot be
less that 0 years old "AND" they
cannot be over 150 years old.

Range Data
Validation
Example

• age = -1

if age < 0 or age > 150:
 print("Age is not valid, try again")
else:
 print("Age is valid")

Constraint Data
Validation

This is not a single thing.

You decide the constraint.

For example, the length of a
name cannot be longer than
30 characters.

Constraint Data
Validation
Example

• name = input("Enter your name please...")

if len(name) == 0 or len(name) > 30:
 print("Please try again")
else:
 print("Thank you !")

Boolean Data
Validation

• This will check if the evaluation is
True or False.

• For example, if your name is
longer than 30 characters, please
contact the customer service
department to create an account.

Boolean Data
Validation
Example

• name = input("Enter your name please...")

if len(name) > 30:
 print("Please contact Customer Service")
else:
 print("Thank you !")

Post-check
actions

Post-check actions are actions that are
performed after a validation check has been
completed.

They're the steps you take based on whether
the validation was successful or not.

For example, if the age is more than 150 ask
them to try again.

For example, if the data is correct add it to
the database.

Post-check actions Example

• # Post Check Data Validation

while True: # Loop until a valid age is entered
 try:
 age = int(input("Enter your age: ")) # Get age input and try to convert
to int

 if age > 150:
 print("That age is too high. Please try again.") # Ask to try again
 elif age < 0:
 print("Age cannot be negative. Please try again.")
 else:
 print("Age is valid:", age) # Age is valid, exit the loop
 break # Exit the loop if the age is valid

 except ValueError: # Handle cases where the input is not a number
 print("Invalid input. Please enter a number.")

Next Time

Control Structures

	Slide 1: BTEC Level 3 Computing
	Slide 2: Selecting, applying, using and interpreting validation techniques to analyse and improve the accuracy and validity of data.
	Slide 3
	Slide 4: Validating Data
	Slide 5: What is Data Validation?
	Slide 6: Why validate Data?
	Slide 7: Why validate Data?
	Slide 8: Types Of Data Validation
	Slide 9: Data Type Data Validation
	Slide 10: Data Type Data Validation Example
	Slide 11
	Slide 12: Range Data Validation
	Slide 13: Range Data Validation Example
	Slide 14
	Slide 15: Constraint Data Validation
	Slide 16: Constraint Data Validation Example
	Slide 17
	Slide 18: Boolean Data Validation
	Slide 19: Boolean Data Validation Example
	Slide 20
	Slide 21: Post-check actions
	Slide 22: Post-check actions Example
	Slide 23
	Slide 24: Next Time

