
BTEC Level 3 Computing

Selecting, applying, using and
interpreting common programming
control structures to analyse and

improve the effectiveness of code.

Control Structures

The Main
Control

Sturucture
Categories

Loops.

Branches.

Function/Procedure Calls.

Loops
• They provide a way to automate repetitive

tasks and avoid writing the same code
multiple times.

• Instead of writing the same instructions
over and over, you put them inside a loop,
and the loop handles the repetition for you.

• Repeat.

• For.

• While.

• Break (used to stop the loop).

Repeat Loop

• This is not an actual loop.

• This is what the loop does.

• This can be created using a For Loop
or a While Loop.

For Loop

Allows you to repeatedly execute a
block of code a specific number of
times or for each item in a collection
(like a list, tuple, string, or dictionary).

It is useful when you know in advance
how many times you want to iterate or
when you want to process each
element of a sequence.

For Loop Example Python

• # For Loop Example

text_to_show = "RonsTechHub is amazing......"

counter = 0
for i in range (0, 100):
 print("Count:", counter, text_to_show)
 counter = counter+1

While Loop

A control flow statement that allows you to
execute a block of code as long as a certain
condition remains true.

Unlike a for loop, which iterates over a sequence a
fixed number of times, a while loop continues to
run until its condition becomes false.

For example, as long as there is power to this
device do this.

Keep counting until you get to 10,000.

While Loop Example

• count = 0
while count < 10000:
 print("Count:",count)
 count += 1 # Important: Update the condition!

Branches
• Branching lets your code make decisions. It

uses conditions (true/false) to choose
which code to run.

• If.

• Else.

• ElseIf (Elif).

• Then (replacable with else or elif).

If Statement

An if statement is like asking a question: "Is this
condition true?"

If the answer is "yes" (true), the computer runs a
specific block of code.

If the answer is "no" (false), the computer skips
that code. It's how your program makes simple
decisions.

Else If or Elif Statement

The purpose of else if (often written as elif in Python, elseif in some other
languages) is to provide a way to check multiple conditions in sequence.

It's an extension of the basic if statement.

Check one thing, then use this to check another.

Else Statement

The else keyword in programming provides a way to define a block of code
that should be executed when a specific condition is not met.

It's always used in conjunction with a conditional statement, most commonly
an if statement (and sometimes with loops as we'll see).

This is a good way to catch errors, for example, the "if" might not be true and
the "elif" might not be true.

To prevent your code from crashing, you can use else to catch all other
possibilities.

If, Else and Elif Statement Example

• age = 17

if age == 17:
 print("You are NOT allowed to drive.")
elif age == 18:
 print("You are allowed to drive")
else:
 print("There was an error, please try again")

Functions
• Functions are like mini-programs within

your main program.

• They are reusable blocks of code that
perform a specific task.

• Think of them as tools in a toolbox: each
tool has a particular job, and you can use
them whenever you need to perform that
job, without having to recreate the tool every
time.

• Defining Functions.

• Declaring Arguments.

• Calling Functions.

Defining A
Function

This simply means to create a function.

For Python3, the "def" keyword is used
to start a function creationg.

This "def" cannot be used in your
program, it is a built in name in Python.

After you define, you need to then call
the function.

Defining A Function Example

• def SpeakTheTruth():
 print("RonsTechHub is amazing....")

Declaring Arguments

• This tells the function what is needs to do its
work.

• For example, a function needs two numbers
as an input, then it will multiply them.

• The function is still not able to be run, we will
then need to call the function.

Declaring Arguments Example

• def multiply_integers(num1, num2):
 product = num1 * num2 # Perform the multiplication
 return product # Return the result

Calling Functions

• This is where we tell the program to use the function we made
earlier.

• def multiply_integers(num1, num2):
 product = num1 * num2 # Perform the multiplication
 print (product) # Return the result

multiply_integers(10, 51)

Functions vs Procedures

• Functions Return a value to the user.

• Procedures do not return a value to the user.

Function Example

• def multiply_integers(num1, num2):
 product = num1 * num2 # Perform the multiplication
 print (product) # Return the result

multiply_integers(10, 51)

Procedure Example

• def multiply_integers(num1, num2):
 product = num1 * num2 # Perform the multiplication
 return (product) # Return the result

multiply_integers(10, 51)

Next Time

Data Structures

	Slide 1: BTEC Level 3 Computing
	Slide 2: Selecting, applying, using and interpreting common programming control structures to analyse and improve the effectiveness of code.
	Slide 3
	Slide 4: Control Structures
	Slide 5: The Main Control Sturucture Categories
	Slide 6: Loops
	Slide 7: Repeat Loop
	Slide 8: For Loop
	Slide 9: For Loop Example Python
	Slide 10: While Loop
	Slide 11: While Loop Example
	Slide 12
	Slide 13: Branches
	Slide 14: If Statement
	Slide 15: Else If or Elif Statement
	Slide 16: Else Statement
	Slide 17: If, Else and Elif Statement Example
	Slide 18
	Slide 19: Functions
	Slide 20: Defining A Function
	Slide 21: Defining A Function Example
	Slide 22: Declaring Arguments
	Slide 23: Declaring Arguments Example
	Slide 24: Calling Functions
	Slide 25: Functions vs Procedures
	Slide 26: Function Example
	Slide 27: Procedure Example
	Slide 28
	Slide 29: Next Time

